Femtosecond time-resolved photoelectron-photoion coincidence imaging of multiphoton multichannel photodynamics in NO2.

نویسندگان

  • Arno Vredenborg
  • Willem G Roeterdink
  • Maurice H M Janssen
چکیده

The multiphoton multichannel photodynamics of NO(2) has been studied using femtosecond time-resolved coincidence imaging. A novel photoelectron-photoion coincidence imaging machine was developed at the laboratory in Amsterdam employing velocity map imaging and "slow" charged particle extraction using additional electron and ion optics. The NO(2) photodynamics was studied using a two color pump-probe scheme with femtosecond pulses at 400 and 266 nm. The multiphoton excitation produces both NO(2) (+) parent ions and NO(+) fragment ions. Here we mainly present the time dependent photoelectron images in coincidence with NO(2) (+) or NO(+) and the (NO(+),e) photoelectron versus fragment ion kinetic energy correlations. The coincidence photoelectron spectra and the correlated energy distributions make it possible to assign the different dissociation pathways involved. Nonadiabatic dynamics between the ground state and the A (2)B(2) state after absorption of a 400 nm photon is reflected in the transient photoelectron spectrum of the NO(2) (+) parent ion. Furthermore, Rydberg states are believed to be used as "stepping" states responsible for the rather narrow and well-separated photoelectron spectra in the NO(2) (+) parent ion. Slow statistical and fast direct fragmentation of NO(2) (+) after prompt photoelectron ejection is observed leading to formation of NO(+)+O. Fragmentation from both the ground state and the electronically excited a (3)B(2) and b (3)A(2) states of NO(2) (+) is observed. At short pump probe delay times, the dominant multiphoton pathway for NO(+) formation is a 3x400 nm+1x266 nm excitation. At long delay times (>500 fs) two multiphoton pathways are observed. The dominant pathway is a 1x400 nm+2x266 nm photon excitation giving rise to very slow electrons and ions. A second pathway is a 3x400 nm photon absorption to NO(2) Rydberg states followed by dissociation toward neutral electronically and vibrationally excited NO(A (2)Sigma,v=1) fragments, ionized by one 266 nm photon absorption. As is shown in the present study, even though the pump-probe transients are rather featureless the photoelectron-photoion coincidence images show a complex time varying dynamics in NO(2). We present the potential of our novel coincidence imaging machine to unravel in unprecedented detail the various competing pathways in femtosecond time-resolved multichannel multiphoton dynamics of molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond coincidence imaging of multichannel multiphoton dynamics.

The novel technique of femtosecond time-resolved photoelectron-photoion coincidence imaging is applied to unravel dissociative ionization processes in a polyatomic molecule. Femtosecond coincidence imaging of CF3I photodynamics illustrates how competing multiphoton dissociation pathways can be distinguished, which would be impossible using photoelectron or ion imaging alone. Ion-electron energy...

متن کامل

Femtosecond time-resolved photoelectron–photoion coincidence imaging studies of dissociation dynamics

We present the first results using a new technique that combines femtosecond pump–probe methods with energyand angle-resolved photoelectron–photoion coincidence imaging. The dominant dissociative multiphoton ionization ~DMI! pathway for NO2 at 375.3 nm is identified as three-photon excitation to a repulsive potential surface correlating to NO(C P)1O(P) followed by one-photon ionization to NO(X ...

متن کامل

The reaction microscope: imaging and pulse shaping control in photodynamics.

Herein, we review the current capabilities and potential of advanced single-particle imaging techniques to study photodynamics in isolated molecules. These reaction microscopes are able to measure the full three-dimensional energy and angular distribution of (correlated) particles such as electrons and molecular fragments ejected after photoexcitation of molecules. In particular, we discuss the...

متن کامل

Femtosecond time - resolved spectroscopy in polyatomic systems investigated by velocity -

Femtosecond time-resolved spectroscopy in polyatomic systems investigated by velocity-map imaging and high-order harmonic generation presented by David STÄDTER Revealing the underlying ultrafast dynamics in molecular reaction spectroscopy demands state-of-the-art imaging techniques to follow a molecular process step by step. Femtosecond time-resolved velocity-map imaging is used to study the ph...

متن کامل

A photoelectron–photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron TOF resolution of σ=18 ps and energy resolution ∆E/E=3.5%

We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time swi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 128 20  شماره 

صفحات  -

تاریخ انتشار 2008